Learning-facilitated long-term depression and long-term potentiation at mossy fiber—CA3 synapses requires activation of β-adrenergic receptors
نویسندگان
چکیده
Learning-facilitated plasticity refers to hippocampal synaptic plasticity that is facilitated by novel spatial learning events. Both long-term potentiation (LTP) and long-term depression (LTD) are facilitated by novel hippocampus-dependent learning. This has important ramifications for our understanding of how the hippocampus encodes memory. One structure that is rarely studied in vivo, but is believed to be crucially important for working and long-term memory processing is the hippocampal CA3 region. Whereas learning-facilitated plasticity has been described in this structure, the mechanisms underlying this phenomenon have not been explored. The noradrenergic system plays an important role in arousal and qualification of new information as salient. It regulates synaptic plasticity in the dentate gyrus and CA1, but nothing is known about the regulation by the noradrenergic system of synaptic plasticity in the CA3 region. We explored whether β-adrenergic receptors contribute to learning-facilitated plasticity at mossy fiber (mf)-CA3 synapses of behaving rats. We found that receptor antagonism had no effect on basal synaptic transmission, short-term potentiation (STP), short-term depression, LTP, or LTD, that were electrically induced by patterned afferent stimulation. We found, however, that both learning-facilitated LTP and LTD were prevented by antagonism of β-adrenergic receptors, whereas the agonist isoproterenol facilitated STP into LTP. Thus, learning-facilitated and electrically-induced plasticity may not share the same prerequisites. These results support that the mf synapse engages in a distinct aspect of encoding of spatial information that involves both LTP and LTD. Furthermore, changes in arousal that are coupled to new learning are associated with activation of hippocampal β-adrenergic receptors that in turn comprise a key element in this type of information acquisition and processing by the CA3 region.
منابع مشابه
Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus.
Mossy fiber synapses form the major excitatory input into the autoassociative network of pyramidal cells in the CA3 area of the hippocampus. Here we demonstrate that at the mossy fiber synapses, glutamate and gamma-aminobutyric acid (GABA) act as autaptic and heterosynaptic presynaptic inhibitory transmitters through metabotropic glutamate receptors (mGluRs) and GABAB receptors, respectively. B...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملLearning-Facilitated Synaptic Plasticity at CA3 Mossy Fiber and Commissural–Associational Synapses Reveals Different Roles in Information Processing
Subregion-dependent differences in the role of the hippocampus in information processing exist. Recently, it has emerged that a special relationship exists between the expression of persistent forms of synaptic plasticity in hippocampal subregions and the encoding of different types of spatial information. Little is known about this type of information processing at CA3 synapses. We report that...
متن کاملAdenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs at Hippocampal Mossy Fiber Synapses
The physiological conditions under which adenosine A2A receptors modulate synaptic transmission are presently unclear. We show that A2A receptors are localized postsynaptically at synapses between mossy fibers and CA3 pyramidal cells and are essential for a form of long-term potentiation (LTP) of NMDA-EPSCs induced by short bursts of mossy fiber stimulation. This LTP spares AMPA-EPSCs and is li...
متن کاملInduction of hebbian and non-hebbian mossy fiber long-term potentiation by distinct patterns of high-frequency stimulation.
The synapse made by hippocampal mossy fibers onto pyramidal neurons of hippocampal area CA3 displays a form of long-term potentiation (LTP) that is independent of the activation of NMDA receptors. Considerable controversy exists as to whether the induction of mossy fiber LTP requires postsynaptic activation and, thus, whether mossy fiber LTP is Hebbian or non-Hebbian. Here we report the inducti...
متن کامل